Dust settling in local simulations of turbulent protoplanetary disks
نویسندگان
چکیده
In this paper, we study the effect of MHD turbulence on the dynamics of dust particles in protoplanetary disks. We vary the size of the particles and relate the dust evolution to the turbulent velocity fluctuations. We performed numerical simulations using two Eulerian MHD codes, both based on finite difference techniques: ZEUS– 3D and NIRVANA. These were local shearing box simulations incorporating vertical stratification. Both ideal and non ideal MHD simulations with midplane dead zones were carried out. The codes were extended to incorporate different models for the dust as an additional fluid component. Good agreement between results obtained using the different approaches was obtained. The simulations show that a thin layer of very small dust particles is diffusively spread over the full vertical extent of the disk. We show that a simple description obtained using the diffusion equation with a diffusion coefficient simply expressed in terms of the velocity correlations accurately matches the results. Dust settling starts to become apparent for particle sizes of the order of 1 to 10 centimeters for which the gas begins to decouple in a standard solar nebula model at 5.2AU. However, for particles which are 10 centimeters in size, complete settling toward a very thin midplane layer is prevented by turbulent motions within the disk, even in the presence of a midplane dead zone of significant size. These results indicate that, when present, MHD turbulence affects dust dynamics in protoplanetary disks. We find that the evolution and settling of the dust can be accurately modelled using an advection diffusion equation that incorporates vertical settling. The value of the diffusion coefficient can be calculated from the turbulent velocity field when that is known for a time of several local orbits.
منابع مشابه
3D SPH simulations of grain growth in protoplanetary disks
We present the first results of the treatment of grain growth in our 3D, two-fluid (gas+dust) SPH code describing protoplanetary disks. We implement a scheme able to reproduce the variation of grain sizes caused by a variety of physical processes and test it with the analytical expression of grain growth given by Stepinski & Valageas (1997) in simulations of a typical T Tauri disk around a one ...
متن کاملDust Size Growth and Settling in a Protoplanetary Disk
We have studied dust evolution in a quiescent or turbulent protoplanetary disk by numerically solving coagulation equation for settling dust particles, using the minimum mass solar nebular model. As a result, if we assume an ideally quiescent disk, the dust particles settle toward the disk midplane to form a gravitationally unstable layer within 2× 103–4× 10yr at 1–30 AU, which is in good agree...
متن کاملGlobal MHD simulations of stratified and turbulent protoplanetary discs. II. Dust settling
Aims. The aim of this paper is to study the vertical profile of small dust particles in protoplanetary discs in which angular momentum transport is due to MHD turbulence driven by the magnetorotational instability. We consider particle sizes that range from approximately 1 micron up to a few millimeters. Methods. We use a grid–based MHD code to perform global two-fluid simulations of turbulent ...
متن کاملDust Coagulation and Settling in Layered Protoplanetary Disks
Previous models of dust growth in protoplanetary disks considered either uniformly laminar or turbulent disks. This Letter explores how dust growth occurs in a layered protoplanetary disk in which the magnetorotational instability generates turbulence only in the surface layers of a disk. Two cases are considered: a completely laminar dead zone and a dead zone in which turbulence is “stirred up...
متن کاملDust Diffusion in Protoplanetary Discs by Magnetorotational Turbulence
We measure the turbulent diffusion coefficient of dust grains embedded in magnetorotational turbulence in a protoplanetary disc directly from numerical simulations and compare it to the turbulent viscosity of the flow. The simulations are done in a local coordinate frame comoving with the gas in Keplerian rotation. Periodic boundary conditions are used in all directions, and vertical gravity is...
متن کامل